If a1,a2,...,an, are in AP with a common difference d≠0, then the sum of the following series is(sind)[coseca1coseca2+coseca2coseca3+...+coseca(n-1)cosecan] is equal to
seca1-secan
cota1-cotan
tana1-tanan
coseca1-cosecan
Explanation for the correct option:
Find the value of (sind)[coseca1coseca2+coseca2coseca3+...+coseca(n-1)cosecan] :
Given a1,a2,…...,an are in AP.
Common difference,d=a2-a1=a3-a2=an–a(n-1)
(sind)[coseca1coseca2+coseca2coseca3+…+coseca(n-1)cosecan]=sin(a2-a1)sina1sina2+sin(a3-a2)sina2sina3+…..+sin(an-a(n-1))sina(n-1)sinan=(sina2cosa1-sina1cosa2)sina1sina2+(sina3cosa2-sina2cosa3)sina2sina3+…..+(sinancosa(n-1)-sina(n-1)cosan)sina(n-1)sinan[∵sin(A-B)=sinAcosB-cosAsinB]=(cota1–cota2)+(cota2–cota3)+….+(cotan-1–cotan)=(cota1–cotan)
Hence, the correct option is B.
If an,a2,a3,…… are in A.P., with common difference d, then the sum of the series sin d[sec a1 sec a2+sec a2 sec a3+……+sec an−1 sec an], is
If a1,a2,a3,……an are in A.P., with common difference d, then the sum of the series sin d[cosec a1 cosec a2+cosec a1 cosec a3+……+cosec an−1 cosec an] is