If a1a......an are positive real numbers whose product is a fixed number c, then the minimum value of a1+a2+.......+a(n-1)+2an is
n(2c)1/n
(n+1)c1/n
(2n)c1/n
(n+1)2c1/n
Calculate the minimum value of a1+a2+.......+a(n-1)+2an :
Given product, a1×a2×…....×an=c
Multiplying both sides by 2 we get,
a1a2…......(an-1)(2an)=2c.........(1)
We know AM≥GM
(a1+a2+a3+….+2an)n≥a1a2.....(an-1)(2an)1/n⇒(a1+a2+a3+….+2an)n≥(2c)1/n(fromequation(1))⇒(a1+a2+a3+….+2an)≥n(2c)1/n
So the minimum value of a1+a2+…….+an-1+2an=n(2c)1/n
Hence, the correct option is( A).