If AB is a double ordinate of the hyperbola x2a2−y2b2=1 such that ΔAOB(O is the origin) is an equilateral triangle, then the eccentricity e of the hyperbola satisfies :
Let O=(0,0),A=(asecθ,btanθ),B=(asecθ,−btanθ) since AB is a double ordinate.
Since ΔABO is equilateral, OA=AB
⇒a2sec2θ+b2tan2θ=4b2tan2θ
⇒a2+a2tan2θ=3b2tan2θ
⇒b2a2=1+tan2θ3tan2θ
e2=1+b2a2=1+1+tan2θ3tan2θ=1+4tan2θ3tan2θ=1+13sin2θ
Using sin2θ<1, we get e2>43
So, e>2√3