If ABC is an equilateral triangle of side a, prove that its altitude = √32a
ΔABC is an equilateral triangle.
We are given that AB = BC = CA = a. AD is the altitude, i.e., AD ⊥ BC.
Now, in right angled triangles ABD and ACD, we have
AB = AC [Given]
and AD = AD [Common side]
⇒ ΔABD ~ ΔACD [ By RHS congruence]
⇒BD = CD ⇒ BD = DC = 12 BC = a2
From right triangle ABD,
AB2 = AD2 + BD2 ⇒ a2 = AD2 + (a2)2
⇒AD2 = a2 - a24 = 34 a2
⇒ AD =√3a2