wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ABC is triangle and tanA2,tanB2,tanC2 are in H.P the find the minimum value of cotB2

Open in App
Solution

ABC is a triangle, therefore A+B+C=π
cotA2cosB2cotC2=cotA2+cotB2+cotC2
But tanA2,tanB2,tanC2H.P
cotA2+cotB2+cotC2A.P
cotA2+cotC2=2cotB2
Therefore
cotA2.cotB2.cotC2=3cotB2
cotA2.cotC2=3
Now cosA2+cotC22cosA2cotC22cotB223
cotB23

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon