If ABC is triangle and tanA2,tanB2,tanC2 are in H.P the find the minimum value of cotB2
Open in App
Solution
ABC is a triangle, therefore A+B+C=π ⇒cotA2cosB2cotC2=cotA2+cotB2+cotC2 But tanA2,tanB2,tanC2→H.P ⇒cotA2+cotB2+cotC2→A.P ⇒cotA2+cotC2=2cotB2 Therefore cotA2.cotB2.cotC2=3cotB2 ∴cotA2.cotC2=3 Now cosA2+cotC22≥√cosA2cotC2⇒2cotB22≥√3 ∴cotB2≥√3