If ABCD is a cyclic quadrilateral inscribed in a circle of radius 2 units such that AB=1, BD=2√3 then AD=
3√5+12
Let AD=x and ∠BAD=θ
By Sine Rule, inΔBAD, BDsinθ=2R
⇒sinθ=2√32×2⇒sinθ=√32 ∴θ=60∘
By Cosine Rule, in ΔBAD, cos60∘=x2+12−(2√3)22×x×1
∴ x=1±3√52
∵x>0 ∴x=1+3√52