If ABCD is a prallelogram, then prove the area(△ABD)=area(△BCD)=area(△ABC)=area(△ACD)=12area(||gmABCD)
In || gm ABCD, BD and AC are joined
To Prove : area (△ABD)=area(△BCD=area(△ABC)=area(△ACD)=12area(||gmABCD)
Proof: ∵ Diagonals of a parallelogram bisect it into two triangles equal in area.
When BD is the diagonal, then,
area(△ABD)=area(△BCD)=12area(||gmABCD) -----(i)
When AC is the diagonal, then,
area (△ABC)=area(△ACD)=12area(||gmABCD) ----(ii)
From (i) and (ii) ,
area(△ABD)=area(△BCD)=area(△ABC)=area(△ACD)=12area(||gmABCD)