If acos 2θ+bsin 2θ=c has α and β as its roots, prove that α+tanβ=2ba+c and α−tan β=2a+c√b2−c2+a2.
It is given that acos 2θ+bsin 2θ=c
⇒ a(1−tan2 θ1+tan2 θ)+b(2tan θ1+tan2 θ)=c [∵ cos 2θ=1−tan2 θ1+tan2 θ and sin2θ=2tan θ1+tan2 θ]
⇒ a(1−tan2 θ)+2b tan θ=c(1+tan2 θ)
⇒ (a+c)tan2 θ−2b tan θ+(c−a)=0
which is a quadratic equation in tanθ
∴ Sum of roots = tan α+tan β=−(−2ba+c)=2ba+c
and product of roots = tan α.tanβ=(c−a)a+c
Now, We have LHS = tan α−tanβ=√(tan α+tanβ)2−4 tan α tanβ
= √(2ba+c)2−4(c−aa+c)=2(a+c)√b2−(c−a)(c+a)
= 2(a+c)√b2−(c2−a2)=2(a+c)√b2−c2+a2=RHS
Hence proved.