wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If acosx+cotx+1=cosecx then the possible values of x can be

A
x=nπ,aεR,nε|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=(4n+1)π2,aεR,nε|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x=12sin1(4(a+1)a2),aε(,222)[2+22,]{1}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B x=12sin1(4(a+1)a2),aε(,222)[2+22,]{1}
D x=(4n+1)π2,aεR,nε|
acosx+cotx+1=cscx
acosx+cosxsinx+1=1sinx
acosxsinx+cosx+sinx=1sinx+cosx=1acosxsinx
(sinx+cosx)2=(1acosxsinx)21+2sinxcosx=1+a2cos2xsin2x2asinxcosx
a2sin2xcos22(a+1)sinxcosx=0sin2x(a22sin2x2(a+1))=0
sin2x=0 a ϵR
x=nπ2,nϵI
And sin2x=4(a+1)a2aϵ(,222,)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon