The correct options are
B x=12sin−1(4(a+1)a2),aε(−∞,2−2√2)∪[2+2√2,∞]−{−1}
D x=(4n+1)π2,aεR,nε|
acosx+cotx+1=cscx
⇒acosx+cosxsinx+1=1sinx
⇒acosxsinx+cosx+sinx=1⇒sinx+cosx=1−acosxsinx
⇒(sinx+cosx)2=(1−acosxsinx)2⇒1+2sinxcosx=1+a2cos2xsin2x−2asinxcosx
⇒a2sin2xcos2−2(a+1)sinxcosx=0⇒sin2x(a22sin2x−2(a+1))=0
sin2x=0 ∀ a ϵR
⇒x=nπ2,nϵI
And sin2x=4(a+1)a2⇒aϵ(−∞,2−2√2,∞)