If AD, BE and CF are the medians of an equilateral triangle ABC, then the true statement is -
3 (AB2 + BC2 + AC2) = 4 (AD2 + BE2 + CF2)
AB2 + AC2 = 2 AD2 + 2 (12BC)2
⟹ AB2 + AC2 = 2 AD2 + 12BC2
BC2 + AB2 = 2 BE2 + 12AC2
and BC2 + AC2 = 2 CF2 + 12AB2
Adding we get
3( AB2 + BC2 + AC2) = 4 ( AD2 + BE2 + CF2)