If AD, BE and CF are the medians of an equilateral triangle ABC, then which of the following statements is valid?
3 (AB2 + BC2 + AC2) = 4 (AD2 + BE2 + CF2)
For triangle ABD,
AB2=AD2+(12BC)2
For triangle ACD,
AC2=AD2+(12BC)2
Adding the two equations, we get
AB2+AC2=2AD2+2(12BC)2
⇒AB2+AC2=2AD2+12BC2 (1)
Similarly,
BC2+AB2=2BE2+12AC2 (2)
and BC2+AC2=2CF2+12AB2 (3)
Adding (1), (2) and (3), we get:
2(AB2+BC2+AC2)=2(AD2+BE2+CF2)+12(AB2+BC2+AC2)
⇒32(AB2+BC2+AC2)=2(AD2+BE2+CF2)
⇒3(AB2+BC2+AC2)=4(AD2+BE2+CF2)