Given:In△ABC,AD,BEandCFaremedians.In△ABC,AD,BEandCFaremedians.Weknowthattheseareconcurrent.LetthesemeetatG.AlsoAG:GD=BG:GE=CG:GF=2:1So,AG=23AD,BG=23BE,CG=23CF.....(1)Becauseintriangle,thesumoftwosidesisgreaterthanthethird,So,in△AGB,AG+BG>ABIn△BGC,BG+CG>BCIn△CGA,CG+AG>CAAddingthese,weget2(AG+BG+CG)>AB+BC+CA⇒2(23AD+23BE+23CF)>AB+BC+CA[From(1)]⇒43(AD+BE+CF)>AB+BC+CA⇒4(AD+BE+CF)>3(AB+BC+CA)....(2)Nowin△ABDAB+BD>AD⇒AB+12BC>AD(sinceADisamedian)Similarly,BC+12CA>BEandCA+12AB>CFAddingthese,weget32(AB+BC+CA)>AD+BE+CF⇒3(AB+BC+CA)>2(AD+BE+CF)......(3)Combining(2)and(3),weget2(AD+BE+CF)<3(AB+BC+CA)<4(AD+BE+CF).HenceProved