wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If AD,BEandCF be medians of a ΔABC,then 2(AD+BE+CF)<k(AB+BC+CA)<4(AD+BE+CF).Find k

Open in App
Solution

Given:InABC,AD,BEandCFaremedians.InABC,AD,BEandCFaremedians.Weknowthattheseareconcurrent.LetthesemeetatG.AlsoAG:GD=BG:GE=CG:GF=2:1So,AG=23AD,BG=23BE,CG=23CF.....(1)Becauseintriangle,thesumoftwosidesisgreaterthanthethird,So,inAGB,AG+BG>ABInBGC,BG+CG>BCInCGA,CG+AG>CAAddingthese,weget2(AG+BG+CG)>AB+BC+CA2(23AD+23BE+23CF)>AB+BC+CA[From(1)]43(AD+BE+CF)>AB+BC+CA4(AD+BE+CF)>3(AB+BC+CA)....(2)NowinABDAB+BD>ADAB+12BC>AD(sinceADisamedian)Similarly,BC+12CA>BEandCA+12AB>CFAddingthese,weget32(AB+BC+CA)>AD+BE+CF3(AB+BC+CA)>2(AD+BE+CF)......(3)Combining(2)and(3),weget2(AD+BE+CF)<3(AB+BC+CA)<4(AD+BE+CF).HenceProved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Direction Cosines and Direction Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon