If AD is bisector of interior ∠ A of a triangle ABC and AB=10cm,AC=6cm,BD=12cm, then CD= ?
In a triangle ABC, AD is the angular bisector and BD: DC = 2:1. If AB = 12 cm, find AC.
In a ΔABC, AD is the bisector of ∠A.
(i) If AB = 6.4 cm, AC = 8 cm and BD = 5.6 cm, find DC.
(ii) If AB = 10 cm, AC = 14 cm and BC = 6 cm, find BD and DC.
(iii) If AB = 5.6 cm, BD = 3.2 cm and BC = 6 cm, find AC.
(iv) If AB = 5.6 cm, AC = 4 cm and DC = 3 cm, find BC.
In Fig 7.59, check whether AD is the bisector of ∠A of ΔABC in each of the following: (i) AB =5 cm,AC= 10cm, BD= 1.5 cm and CD=3.5ccm (ii) AB = 4 cm. AC = 6 cm, BD =1.6cm and CD = 2.4 cm (iii) AB =8 cm, AC=24 cm, BD=6cm and BC = 24cm (iv) AB=6cm,AC=8 cm, BD=1.5 cm and CD = 2cm (v) AB= 5 cm, AC= 12cm, BD = 2.5cm and BC = 9 cm