If A>0,B>0 and A+B=π3, then the maximum value of tanAtanBis
12
13
14
16
Finding the value for :
Given, A>0,B>0andA+B=π3
That means,tanA>0,tanB>0
We know that, AM≥GM
(tanA+tanB)2≥tan(A)tan(B)
⇒(tanA+tanB)≥2tan(A)tan(B)
⇒(tanA+tanB)-2tan(A)tan(B)=0
⇒(tanA-tanB)2=0
⇒tan(A)-tan(B)=0
⇒ tan(A)=tan(B)tan(A)=tan(B)
According to the given, this is possible when A=B
=π6
Therefore, tanAtanB=tanπ6tanπ6
⇒ =1313
⇒=132
⇒ =13
Hence, option 'B' is correct.