wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a=i-j,b=j-k,c=k-i. If d is a unit vector such that a.d=0=[bcd], then d is (are) equal to ?


A

±(i+j-k)3

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

±(i+j-2k)6

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

±(i+j+k)3

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

±k

No worries! We‘ve got your back. Try BYJU‘S free classes today!
E

i+j

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

±(i+j-2k)6


Explanation for the correct option:

Step 1. Expressing the given data:

Given,

a=i-j,

b=j-k and

c=k-i.

Now we are given, [bcd]=0

So b,c and d are Coplanar vectors

Therefore,

d=b+λc=(j-k)+λ(-i+k)

d=j-k-λi+λk

d=-λi+j+λk-k

d=-λi+j+λ-1k

d=(-λ)i+j+(λ-1)ki

Now,

a.d=0

i-j.-λi+j+λ-1k=0

-λi.i+λi.j+i.j-j.j+λk-k.i-λk-k.j=0

-λ-1+0=0 i·j=j·k=k·i=0

-λ-1=0

-λ=1

Multiply negative on both side

λ=-1

Step 2. Put λ=-1 in equation i

d=(-λ)i+j+(λ-1)k

d=--1i+j+-1-1k

d=1i+j+-2k

d=i+j-2k

Step 3. Finding the value of d^.

Now ,d^=±dd |d|=x2+y2+z2

d^=±i+j-2k12+12+-22

d^=±i+j-2k1+1+4

d^=±(i+j-2k)6

Hence , option (B) is correct.


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon