If all sides of a parallelogram touch a circle, show that the parallelogram is a rhombus
Open in App
Solution
Let ABCD be a parallelogram. Parallelogram touches the circle at P,Q,R,S AP=AS .... (1) PB=BQ .... (2) CR=CQ .... (3) DR=DS .... (4) Now add (1), (2), (3) and (4), AP+PB+CR+DR=AS+BQ+CQ+DS ⇒AP+PB+CR+DR=AS+DS+BQ+CQ ⇒AB+CD=AD+BC ⇒AB+AB=BC+BD ....(∵ In a parallelogram AB=CD,BC=AD) ⇒2AB=2BC ⇒AB=BC ∴ the parallelogram becomes a rhombus.