The correct option is A 4 < a £ 5
4x−(a−3)2x+(a−4)=0
x≥0, Let y=2x
y2−(a−3)y+(a−4)=0
The roots of quadratic must lie between (0,1]
a)(a−3)2−4(a−4)≥0
a2+9−6a−4a+16≥0
a2−10a+25≥0
a≥R
b)0≤a−32≤1
0<a−3≤2
0<a≤5
c)f(0)=a−4>0 a≥4
d)f(1)=1−a+3+a−4≥0,∴ a∈(4,5]