The correct option is A 0
Let f(y)=2y3−9y2+20−a=0
f′(y)=6y2−18y
f′(y)=0 gives y=0,3
f′′(y)=12y−18
f′′(0)=−18, f′′(3)=18
⇒y=0 is a point of local maxima and y=3 is a point of local minima.
⇒f(0)>0 & f(3)<0⇒a∈(−7,20) ⋯(1)
Now, using AM≥GM inequality,
x+1x≥2, x>0 and
x+1x≤−2, x<0
⇒|y|≥2
Therefore, no root lies between [−2,2]
⇒f(−2)>0 and f(2)>0
⇒−32−a>0 and −a>0
⇒a<−32 and a<0
⇒a<−32 ⋯(2)
From eqn(1) and (2)
There is no real value of a.