If α0,α1,α2,....................α9 be the roots of the equation x10 -1 = 0. Find the value of ∑9i=012−αi (Neglect the decimal part of your answer write only integer part)
x10 = 1
x = (1)110
x10 - 1 = (x−α0) (x−α1) (x−α2)............(x−α9)
Taking log on both sides
log(x10−1) = log(x−α0) + log(x−α1) +....................log(x−α9)
Differentiating both sides
ddxlog(x10−1) = ddxlog(x−α0) + ddxlog(x−α1) +....................ddxlog(x−α9)
10.x9x10−1 = 1(x−α0) + 1(x−α1) + 1(x−α2) +.....................1(x−α9)-----------(1)
Put x = 2
10.29210−1 - ∑9i=012−αi
∑9i=012−αi = 10×5121024−1 = 10×5121023 = 51201023 = 5.00488
So, correct answer = 5
Or we can find approximate integer value by eliminating 1 from the denominator so, 10×5121024−1 ≈ 10×5121024 ≈
10×29210 = 5