If α0,α1,α2,.........αn−1 be the n, nth roots of unity, then value of n−1∑i=0 αi(3−αi) is equal to
n3n−1
Let P = n−1∑i=0 αi3−αi = - n−1∑i=0 (3−αi)−3(3−αi) = 3 n−1∑i=0 13−αi - n−1∑i=01 ------------(i)
Zn - 1 = n−1Πi=0 (Z−αi)
then log(Zn - 1) = n−1∑i=0ln(Z−αi)
Diff. both sides w.r.t. Z
nZn−1Zn−1 = n−1∑i=0 1z−αi Put Z = 3
⇒n3n−13n−1 = n−1∑i=013−αi
P = 3n3n−13n−1 - n = n3n3n−1 - n = n3n−1