If α0,α1,α2…,αn−1 be the n, nth roots of the unity, then the value of ∑n−1i=0αi(3−αi) is equal to
n3n−1
Let P=∑n−1i=0αi(3−αi)=−∑n−1i=0(3−αi)−33−αi=3∑n−1i=013−αi−∑n−1i=01……(i)∵ zn−1=∑n−1i=0(z−αi)∴ ln(zn−1)=∑n−1i=0ln(z−αi)
Differentiating both sides w.r.t. z, then
nzn−1(zn−1)=∑n−1i=01(z−αi)
Using this relation to simplify Eq. (i), we get
3(n.3n−13n−1)−n=n3n3n−1−n=n3n−1