wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α1,α2,α3,α4 be the roots of x51=0 then find ωα1ω2α1ωα2ω2α2ωα3ω2α3ωα4ω2α4

A
ω2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ω
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(ωα1)(ωα2)(ωα3)(ωα4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C ω
x51=0 has roots 1,α1,α2,α3,α4
(x51)=(x1)(xα1)(xα2)(xα3)(xα4)
x51x1=(xα1)(xα2)(xα3)(xα4) ........ (1)
Putting x=ω (1) we have
ω51ω1=(ωα1)(ωα2)(ωα3)(ωα4)
ω21ω1=(ωα1)(ωα2)(ωα3)(ωα4) ....... (2)
and putting x=ω2 in (1) we have
ω101ω21=(ω2α1)(ω2α2)(ω2α3)(ω2α4)
ω1ω21=(ω2α1)(ω2α2)(ω2α3)(ω2α4) ....... (3)
Dividing (2) by (3)
then ωα1ω2α1ωα2ω2α2ωα3ω2α3ωα4ω2α4=(ω21)2(ω1)2
=ω4+12ω2ω2+12ω
=ω+12ω2ω2+12ω
=ω22ω2ω2ω
=3ω23ω
=ω
Ans: C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inverse of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon