If α1,α2,α3,α4 be the roots of x5−1=0 then find ω−α1ω2−α1⋅ω−α2ω2−α2⋅ω−α3ω2−α3⋅ω−α4ω2−α4
A
ω2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ω
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(ω−α1)(ω−α2)(ω−α3)(ω−α4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cω x5−1=0 has roots 1,α1,α2,α3,α4 ∴(x5−1)=(x−1)(x−α1)(x−α2)(x−α3)(x−α4) ⇒x5−1x−1=(x−α1)(x−α2)(x−α3)(x−α4) ........ (1) Putting x=ω (1) we have ω5−1ω−1=(ω−α1)(ω−α2)(ω−α3)(ω−α4) ω2−1ω−1=(ω−α1)(ω−α2)(ω−α3)(ω−α4) ....... (2) and putting x=ω2 in (1) we have ω10−1ω2−1=(ω2−α1)(ω2−α2)(ω2−α3)(ω2−α4) ⇒ω−1ω2−1=(ω2−α1)(ω2−α2)(ω2−α3)(ω2−α4) ....... (3) Dividing (2) by (3) then ω−α1ω2−α1⋅ω−α2ω2−α2⋅ω−α3ω2−α3⋅ω−α4ω2−α4⋅=(ω2−1)2(ω−1)2 =ω4+1−2ω2ω2+1−2ω =ω+1−2ω2ω2+1−2ω =−ω2−2ω2−ω−2ω =−3ω2−3ω =ω Ans: C