If α1,α2,α3,......,αn are n-values of a variable α such that ∑ni=1ui=155 and ∑ni=1vi=225, where ui=2αi−3 and vi=3αi–5, for i = 1, 2, 3, ..., n, then the value of (∑ni=1ui+∑ni=1vin) is
A
25.¯3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
35.¯3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
27.¯9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A25.¯3 Given: ∑ni=1ui=155 and ∑ni=1vi=225
where ui=2αi−3,vi=3αi–5; i = 1, 2, ..., n,
Now, ∑ni=1ui+∑ni=1(2αi−3) ⇒155=2∑ni=1αi−3n ⇒155=2(α1+α2+....+αn)−3n ⇒α1+α2+....+αn=155+3n2............(i)
Similarly, ∑ni=1vi=∑ni=1(3αi−5) ⇒225=3∑ni=1αi−5n ⇒225=3(α1+α2+....+αn)−5n ⇒α1+α2+....+αn=225+5n3............(ii)
Equating (i) and (ii), we get 155+3n2=225+5n3 ⇒465+9n=450+10n ⇒15=n
Putting all the values in (∑ni=1ui+∑ni=1vin), we get ∑ni=1ui+∑ni=1vin=155+22515 =38015 =763
= 25.33.... =25.¯3
Hence, the correct answer is option (a).