If α1,α2,α3…..αn are the roots of xn+ax+b=0, then (α1−α2)(α1−α3)…..(α1−αn)=
A
nαn−11
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
nαn−11+a
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
nαn−11−a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bnαn−11+a Since,α1,α2,α3…..αn are the roots of xn+ax+b=0 ⇒(x−α1)(x−α2)(x−α3).....(x−αn)=xn+ax+b ⇒(x−α2)(x−α3).....(x−αn)=xn+ax+bx−α1 ⇒limx→α1(x−α2)(x−α3).....(x−αn)=limx→α1xn+ax+bx−α1 applying L'Hospital's rule in RHS as it is of the form 00 ⇒(α1−α2)(α1−α3)…..(α1−αn)=limx→α1nxn−1+a1 ⇒(α1−α2)(α1−α3)…..(α1−αn)=nα1n−1+a