If α1,α2,α3andα4are the roots of the equationx4+(2-3)x2+(2+3)=0, then the value of (1-α1)(1-α2)(1-α3)(1-α4) is
1
4
2+3
5
0
Find the value of(1-α1)(1-α2)(1-α3)(1-α4):
Given that α1,α2,α3andα4are the roots of the equationx4+(2-3)x2+(2+3)=0
As α1,α2,α3andα4 are the roots of the equationx4+(2-3)x2+(2+3)=0
∴x4+(2-3)x2+(2+3)=(x-α1)(x-α2)(x-α3)(x-α4)
putx=1in the above equation.
we get,
(1)4+(2-3)(1)2+(2+3)=(1-α1)(1-α2)(1-α3)(1-α4)⇒(1-α1)(1-α2)(1-α3)(1-α4)=1+(2-3)+(2+3)⇒(1-α1)(1-α2)(1-α3)(1-α4)=5
Hence, the option (D) is the correct option.