If,α=22°30' then(1+cosα)(1+cos3α)(1+cos5α)(1+cos7α) equals
18
14
1+222
2-12+1
Explanation for correct option:
Step 1: Convert the degree measurement into radian measurement.
We have givenα=22°30'
α=22°30'=22°(3060)°=22°(12)°=(452)°=π8
Step 2: We have to find the value of(1+cosα)(1+cos3α)(1+cos5α)(1+cos7α).
⇒(1+cosα)(1+cos3α)(1+cos5α)(1+cos7α)
⇒(1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)
cos5π8=cos(π-3π8)=-cos(3π8)∵cosθliesin2ndquadrantandcos7π8=cos(π-π8)=-cos(π8)∵cosθliesin2ndquadrant
⇒(1+cosπ8)(1+cos3π8)(1-cos3π8)(1-cosπ8)⇒(1-cos2π8)(1-cos23π8)⇒sin2π8sin23π8
Step 3: Applying the formula2sin(x)sin(y)=cos(x-y)-cos(x+y)
[sinπ8sin3π8]2
⇒[sinπ8sin3π8]2⇒[12{cosπ8-3π8-cosπ8+3π8}]2{2sinxsiny=cosx-y-cosx+y}⇒14{cos-π4-cosπ2}2⇒14{-12-0}2⇒14{-12}2⇒14(12)⇒18
Hence, the correct option is(A)
If cos6α+sin6α+K sin22α=1, then K=