The correct options are
A 9x2−18ix−10=0
D 9x2−6x+10=0
Let 6√1+a=k
(k3−1)x2+i(1−k3)x−x(k−1)+i(k−1)=0⇒(k3−1)x(x−i)−(k−1)(x−i)=0
⇒(x−i)((k3−1)x−(k−1))=0⇒x=i,k−1k3−1
Let p and q be the roots of required equation.
Case 1:
α=i,β=k−1k3−1
p=lima→0(α+β)=i+13
q=lima→0(α−β)=i−13
p+q=2i, pq=−109
∴ Required equation is
x2−2ix−109=0
⇒9x2−18ix−10=0
Case 2:
α=k−1k3−1,β=i
p=lima→0(α+β)=13+i
q=lima→0(α−β)=13−i
p+q=23, pq=109
∴ Required equation is
x2−23x+109=0
⇒9x2−6x+10=0