If α and β are acute angles satisfying cos 2α=3 cos 2β−13−cos 2β, then tan α =
√2 tan β
Given:
cos 2α=3 cos 2β−13−cos 2β⇒ cos 2α−1cos 2α+1=(3 cos 2β−1)−(3−cos 2β)(3 cos 2β−1)+(3−cos 2β)
(Using componendo and dividendo)
⇒ cos 2α−1cos 2α+1=4 cos 2β−42 cos 2β+2⇒ −1−cos 2α1+cos 2α=−4(1−cos 2β)2(1+cos 2β)⇒ 1−cos 2α1+cos 2α=2(1−cos 2β)(1+cos 2β)⇒ 2 sin2 α2 cos2 α=2(2 sin2 β)(2 cos2 β)⇒ tan2 α=2 tan2 β∴ tan α=√2 tan β