1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of Conjugate of a Complex Number
If α and ...
Question
If
α
and
β
are different complex number with
|
β
|
=
1
then find
∣
∣
∣
β
−
α
1
−
¯
¯¯
¯
α
β
∣
∣
∣
.
Open in App
Solution
Given:
|
β
|
=
1
⇒
∣
∣
∣
β
−
α
1
−
¯
α
β
∣
∣
∣
2
=
(
β
−
α
1
−
¯
α
β
)
¯
(
β
−
α
1
−
¯
α
β
)
=
(
β
−
α
1
−
¯
α
β
)
(
¯
β
−
¯
α
1
−
α
¯
β
)
⇒
∣
∣
∣
β
−
α
1
−
¯
α
β
∣
∣
∣
2
=
β
¯
β
−
β
¯
α
−
α
¯
β
+
α
¯
α
1
−
¯
α
β
−
α
¯
β
+
α
¯
α
β
¯
β
⇒
∣
∣
∣
β
−
α
1
−
¯
α
β
∣
∣
∣
2
=
|
β
|
2
−
β
¯
α
−
α
¯
β
+
|
α
|
2
1
−
¯
α
β
−
α
¯
β
+
|
α
|
2
|
β
|
2
As
⇒
|
β
|
2
=
1
∣
∣
∣
β
−
α
1
−
¯
α
β
∣
∣
∣
=
(
1
−
β
¯
α
−
α
¯
β
+
|
α
|
2
1
−
¯
α
β
−
α
¯
β
+
|
α
|
2
)
1
2
=
(
1
)
1
2
=
1
Suggest Corrections
0
Similar questions
Q.
If
α
and
β
are two different complex numbers with
|
β
|
=
1
, then
∣
∣
∣
β
−
α
1
−
¯
α
β
∣
∣
∣
is equal to.
Q.
If
α
and
β
are different complex numbers with
|
β
|
=
1
, then the value of
∣
∣
∣
(
β
−
α
)
(
1
−
¯
¯¯
¯
α
β
)
∣
∣
∣
.
Q.
If
α
and
β
are two different complex numbers such that
|
α
|
=
1
,
|
β
|
−
1
, then the expression
∣
∣
∣
β
−
α
1
−
¯
α
β
∣
∣
∣
equals :
Q.
If
α
and
β
are two different complex numbers such that
|
α
|
=
1
,
|
β
|
=
1
, then the expression
∣
∣
∣
β
−
α
1
−
¯
¯¯
¯
α
β
∣
∣
∣
is equal to
Q.
If α and β are different complex numbers with
= 1, then find
.