It is given that, α and β are the distinct roots of a cosθ+b sinθ=c
∴a cosα+b sinα=c ...(i)
and a cosβ+b sin β=c ...(ii)
From Eqs. (i) and (ii), we get
a (cosα−cos β)+b(sin α−sin β)=0
⇒−2 a sin(α+β2) sin(α−β2)+2b cos(α+β2) sin(α−β2)=0 [∵cos C−cos D=−2 sin(C+D2) sin(CD2)andsin C−sin D=2 cos(C+D2) sin(C−D2)]
⇒tan α+β2=ba
Now, sin (α+β)=2 tan(α+β2)1+tan2(α+β2)=2ba1+b2a2=2aba2+b2
We have, LHS=cos20∘ cos40∘ cos60∘ cos80∘=cos60∘ cos20∘ cos40∘ cos80∘
=12(cos 20∘ cos40∘) cos80∘
=14(2 cos20∘ cos40∘) cos80∘ [∵ 2cos A cos B=cos(A+B)+cos(A−B)]
=14(cos 60∘+cos 20∘)cos 80∘=14(cos 60∘ cos80∘+cos 20∘ cos80∘)
=14(12 cos80∘+12.2 cos20∘.cos80∘)
=14[12cos 80∘+12cos(20∘+80∘)+cos(20∘−80∘)]
=14[12 cos80∘+12(cos100∘+cos60∘)]=14[12cos80∘+12{cos(180−80∘)+12}]
=14(12 cos80∘−12 cos80∘+14)=116=RHS