If α and β are imaginary cube roots of unity and x = a+b,y = aα + bβ, z= aβ + bα, then xyz =
α,β are imaginary cube roots of unity.
∴ let α = ω and β = ω2
∴ xyz = (a + b)(aα + bβ)(aβ + bα)
= (a + b) [(a2+b2)αβ+ab(α2+beta2)]
= (a + b) [(a2+b2)ω3+ab(ω2+omega4)]
= (a + b) [a2+b2+ab(ω2+omega)]
= (a+b)(a2+b2−ab)=a3+b3