If αand βare roots of4x2+3x+7=0, then the value of(1α3)+(1β3)=
-2764
225343
6316
6364
Explanation for correct option:
We have given thatαandβare the roots of the equation4x2+3x+7=0
and need to find the value off(1α3)+(1β3)=
∴α+β=-ba=-34αβ=ca=74so,1α3+1β3=β3+α3α3β3=[(β+α)3-3αβ(β+α)](αβ)3⇒[(-34)3-3×(74)(-34)](74)3=225343
Hence, option(B)is correct answer
If α,β are the roots of the equation 4x2+3x+7=0, then find the value of α2β+β2α