Given: $\alpha,\beta$ are the positive roots of the equation $ax^2+bx+c=0$
To find: Equation with roots $\dfrac{1}{\sqrt\alpha}$ and $\dfrac{1}{\sqrt\beta}$
Let $y=\dfrac{1}{\sqrt{x}}$
$\Rightarrow x=\dfrac{1}{y^2}$
Put $x=\dfrac{1}{y^2}$ in given equation,
$a\left(\dfrac{1}{y^2}\right)^2+b\left(\dfrac{1}{y^2}\right)+c=0$
$\Rightarrow \dfrac{a}{y^4}+\dfrac{b}{y^2}+c=0$
$\Rightarrow cy^4+by^2+a=0$
Now, In terms of variables \(x,\) the transformed equation becomes:
$cx^4+bx^2+a=0$