wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α and β are the roots of the equation ax2+bx+c=0, then find the equation whose roots are given by
i) α+1β,β+1α
ii) α2+2,β2+2

Open in App
Solution

ax2+bx+c=0
α & β are roots of above eqn
α+β=ba
αβ=ca
α+1α,β+1β roots of other eqn
sum =α+1β+β+1α
=α+1α+β+1β
=α2+1α+β2+1β
=α2β+β+αβ2+ααβ
=αβ(α+β)+(αα)αβ=ca(ba)+bac/a
=b/a(c/a+1)c/a
=b(c+a)c
Product =(α+1β)(β21α)
=(αβ+1β)(αβ+1α)
=(αβ+1)2αβ=(c/a+1)2c/a
(c+a)2ca
eqn x2(b(c+a)c)x+(c+a)2ca=0
α2+2,β2+2
Sum =α2+2+β2+2
=(α+β)2+42αβ
=(ba)22(ca)+4
=b2a22ca+4=b22ac+4a2a2
Product =(α2+2)(β2+2)
=α2β2+2(α2+β2)+4
=(αβ)2+2((α+β)22αβ)+4
=(ca)2+2((ba)22(ca))+4
=c2a2+2(b2a22ca)+4
=c2+2b24ac+4a2a2
eqn x2(b22ac+4a2a2)x+(c2+2b24ac+4a2a2)
eqn (a2)x2(b22ac+4a2)x+(c2+2b24ac+4a2)=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon