α,β are roots of the equation x2−4x+1=0, α>βf(α,β)=β32sin2(12tan−1βα)+α32cos2(12tan−1αβ)=β31−cos(tan−1βα)+α31+cos(tan−1αβ)=β31−cos(cos−1α√α2+β2)+α31+cos(cos−1β√α2+β2)=β31−α√α2+β2+α31+β√α2+β2=√α2+β2{β3√α2+β2−α+α3√α2+β2+β}=√α2+β2{β3(√α2+β2+α)β2+α3(√α2+β2−β)α2}=√α2+β2(β√α2+β2+α √α2+β2)
=√α2+β2 √α2+β2(α+β)=(α2+β2)(α+β)
={(α+β)2−2αβ}(α+β)
Since, α+β=4, αβ=1,
f(α,β)=(16−2)(4)=14×4=56