wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α and β are the roots of the equation x24x+1=0 (α>β), then the value of f(α,β)=β32cosec2(12tan1βα)+α32sec2(12tan1αβ) is

Open in App
Solution

α,β are roots of the equation x24x+1=0, α>βf(α,β)=β32sin2(12tan1βα)+α32cos2(12tan1αβ)=β31cos(tan1βα)+α31+cos(tan1αβ)=β31cos(cos1αα2+β2)+α31+cos(cos1βα2+β2)=β31αα2+β2+α31+βα2+β2=α2+β2{β3α2+β2α+α3α2+β2+β}=α2+β2{β3(α2+β2+α)β2+α3(α2+β2β)α2}=α2+β2(βα2+β2+α α2+β2)

=α2+β2 α2+β2(α+β)=(α2+β2)(α+β)
={(α+β)22αβ}(α+β)
Since, α+β=4, αβ=1,
f(α,β)=(162)(4)=14×4=56

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What Is a Good Fuel?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon