If α and β are the roots of the equation x2-7x+1=0, then the value of 1/(α-7)2+1/(β-7)2 is
45
47
49
50
51
Explanation for the correct option:
Find the value of 1/(α-7)2+1/(β-7)2 :
Given that α and β are the roots of the equation x2-7x+1=0.
⇒(α+β)=7;α.β=1
and α–7=–β;β–7=–α
Now, 1/(α-7)2+1/(β-7)2
=1(-β)2+1(-α)2=1β2+1α2=α2+β2(α.β)2=α2+β2+2α.β-2α.β(α.β)2=(α+β)2-2α.β(α.β)2=49-21=47
Hence, the correct option is (B).