If α and βare the roots of the equation x2+ax+b=0, then (1/α2)+(1/β2)=
(a2-2b)b2
(b2-2a)b2
(a2+2b)b2
(b2+2a)b2
Find the value of (1/α2)+(1/β2):
Given that α and βare the roots of the equation x2+ax+b=0,
⇒(α+β)=-a;α.β=b
Now, 1α2+1β2=(β2+α2)(α.β)2
1α2+1β2=(β2+α2+2α.β-2α.β)(α.β)2⇒1α2+1β2=(β+α)2-2α.β(α.β)2⇒1α2+1β2=(-a)2-2b(b)2⇒1α2+1β2=a2-2bb2
Hence, the correct option is A.