α,β are roots of the equation x2+px+q=0
⇒α+β=−p …(1)
and αβ=q …(2)
α,β are also roots of the equation x2008+p1004x1004+q1004=0
⇒α2008+(α+β)1004⋅α1004+(α⋅β)1004=0
⇒α2008+(αβ+1)1004⋅β1004⋅α1004+(α⋅β)1004=0
Dividing by (αβ)1004, we get
(αβ)1004+(αβ+1)1004+1=0 …(3)
Given αβ and βα are the roots of xn+1+(x+1)n=0
⇒(αβ)n+1+(αβ+1)n=0 …(4)
By comparing equation (3) and (4), we get
n=1004