If α and β are the roots of x2-2xcos∅+1=0, then the equation, whose roots are αnand βn
x2–2xcosn∅–1=0
x2–2xcosn∅+1=0
x2–2xsinn∅+1=0
x2+2xsinn∅-1=0
Explanation for correct option:
Find the equation :
Given that α and β are the roots of x2-2xcos∅+1=0
⇒x=[2cos∅±4cos2∅-4]2⇒x=[2cos∅±2cos2∅-1]2⇒x=[2cos∅±2-sin2∅]2⇒x=cos∅±isin∅
Let ɑ=cos∅+isin∅,then β=cos∅–isin∅
αn+βn=(cos∅+isin∅)n+(cos∅–isin∅)n=2cosn∅andαn×βn=(cos∅+isin∅)n(cos∅–isin∅)n=cos2n∅+sin2n∅=1
The required equation is x2–2xcosn∅+1=0.
Hence, the correct option is (B).