If α and β are the roots of x2−p(x+1)−q=0, then
(α+1)(β+1)=1−q
α2+2α+1α2+2α+q+β2+2β+1β2+2β+q=1
x2−p(x+1)−q=0x2−px−p−q=0α+β=p,αβ=−p−qα+β+αβ=−qα+β+αβ+1=1−q(1+α)(1+β)=1−q……(1)⇒α2+2α+1α2+2α+q+β2+2β+1β2+2β+q
On putting the value of q - 1 from equation (1)
(α+1)2(α+1)2−(1+α)(1+β)+(β+1)2(β+1)2−(1+α)(1+β)α+1α−β−β+1α−β⇒(α−β)(α−β)=1