wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α and β are the solution of a cosθ+bsinθ=c, then show that :
cos(α+β)=a2b2a2+b2

Open in App
Solution

cos(α+β)=cosαcosβsinαsinβ(1)also,acosθ+bsinθ=cacosθ=cbsinθa2cos2θ=c22cbsinθ+b2sin2θ(squaringbothside)(a2+b2)sin2θ2cbsinθ+(c2a2)=0(usingcos2θ=1sin2θ)productofroots=casinα.sinβ=c2a2a2+b2(2)similarly,acosθ+bsinθ=cacosθc=bsinθa2cos2θ2accosθ+c2=b2sin2θ(squaringbothside)(a2+b2)cos2θ2accosθ+(c2b2)=0(usingsin2θ=1cos2θ)productofroots=cacosα.cosβ=c2b2a2+b2(3)puttingthevalueof(2)and(3)inequation(1)cos(α+β)=c2b2a2+b2c2a2a2+b2=a2b2a2+b2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon