wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α and β are the solution of a cosθ+bsinθ=c, then show that : cos(αβ)=2c2(a2+b2)a2+b2

Open in App
Solution

cos(αβ)=cosαcosβ+sinαsinβ(1)also,acosθ+bsinθ=cacosθ=cbsinθa2cos2θ=c2cbsinθ+b2sin2θ(sqauringbothside)(a2+b2)sin2θ2cbsinθ+(c2a2)=0(cos2θ=1sin2θ)productofroots=casinαsinβ=(c2a2)(a2+b2)(2)similarly,acosθ+bsinθ=cacosθc=bsinθa2cos2θ2accosθ+c2=b2sin2θ(squaringbothside)(a2+b2)cos2θ2accosθ+(c2b2)=0productofroots=cacosαcosβ=(c2b2)(a2+b2)(3)puttingthevalueof(2)and(3)inequation(1)cos(αβ)=(c2b2)(a2+b2)+(c2a2)(a2+b2)=2c2(a2+b2)(a2+b2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon