∵cos(α−β)=cosαcosβ+sinαsinβ⟶(1)also,acosθ+bsinθ=c⇒acosθ=c−bsinθ⇒a2cos2θ=c2cbsinθ+b2sin2θ(sqauringbothside)⇒(a2+b2)sin2θ−2cbsinθ+(c2−a2)=0(∵cos2θ=1−sin2θ)productofroots=ca⇒sinαsinβ=(c2−a2)(a2+b2)⟶(2)similarly,acosθ+bsinθ=c⇒acosθ−c=bsinθ⇒a2cos2θ−2accosθ+c2=b2sin2θ(squaringbothside)⇒(a2+b2)cos2θ−2accosθ+(c2−b2)=0productofroots=ca⇒cosαcosβ=(c2−b2)(a2+b2)⟶(3)puttingthevalueof(2)and(3)inequation(1)⇒cos(α−β)=(c2−b2)(a2+b2)+(c2−a2)(a2+b2)=2c2−(a2+b2)(a2+b2)