If α and β are the solutions of the sequation atanθ+bsecθ=c, show that tan (α+β)=2aca2−c2.
We have ,
atanθ+bsecθ=c⇒bsecθ=c−atanθ⇒b2sec2θ=(c−atanθ)2⇒(a2−b2)tan2θ−2actanθ+c2−b2=0It is given that α ~and β are the solutions of eq(i)Then, tanα+tanβ=2aca2−b2andtanαtanβ=c2−b2a2−b2andtanαtanβ=c2−b2a2−b2Now, LHS=tan(α+β)=tanα+tanβ1−tanαtanβ=2aca2−b21−c2−b2a2−b2=2aca2−b2−c2+b2=2aca2−c2