1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Allied Angles
If α and ...
Question
If
α
and
β
are the two different roots of the equation
a
cos
θ
+
b
sin
θ
=
c
, then show that
sin
α
+
sin
β
=
2
b
c
a
2
+
b
2
and
sin
α
sin
β
=
c
2
−
a
2
a
2
+
b
2
.
Open in App
Solution
a
cos
θ
=
c
−
b
sin
θ
⇒
a
2
(
1
−
sin
2
θ
)
=
c
2
−
2
b
c
sin
θ
+
b
2
sin
2
θ
⇒
(
a
+
b
2
)
sin
2
θ
−
2
b
c
sin
θ
+
(
c
2
+
a
2
)
=
0
Therefore roots of the above equation are
sin
α
and
sin
β
∴
sin
α
+
sin
β
=
2
b
c
a
2
+
b
2
and
sin
α
sin
β
=
c
2
−
a
2
a
2
+
b
2
Suggest Corrections
0
Similar questions
Q.
If
α
and
β
are the solution of
a
cos
θ
+
b
sin
θ
=
c
, then show that :
cos
(
α
−
β
)
=
2
c
2
−
(
a
2
+
b
2
)
a
2
+
b
2
Q.
If
a
cos
θ
−
b
sin
θ
=
c
, show that
α
sin
θ
+
b
cos
θ
=
±
√
a
2
+
b
2
−
c
2
.
Q.
If
α
and
β
are distinct roots of
a
c
o
s
θ
+
b
s
i
n
θ
=
c
, Prove that
s
i
n
(
α
+
β
)
=
2
a
b
a
2
+
b
2
.
or
Prove that
c
o
s
20
∘
c
o
s
40
∘
c
o
s
60
∘
c
o
s
80
∘
=
1
16
Q.
If
s
i
n
α
+
s
i
n
β
=
a
and
c
o
s
α
+
c
o
s
β
=
b
,
show that
(i)
s
i
n
(
α
+
β
)
=
2
a
b
a
2
+
b
2
(ii)
c
o
s
(
α
+
β
)
=
b
2
−
a
2
b
2
+
a
2
Q.
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
(a)
±
a
2
+
b
2
+
c
2
(b)
±
a
2
+
b
2
-
c
2
(c)
±
c
2
-
a
2
-
b
2
(d) None of these