Consider the given equation.
6x2+x−2=06x2+x−2=0 …….. (1)
Since, α,βα,β are roots of given equation.
So,
α+β=−ba=−16α+β=−ba=−16
αβ=ca=−26=−13αβ=ca=−26=−13
Since,
=αβ+βα=αβ+βα
=α2+β2αβ=α2+β2αβ
=(α+β)2−2αβαβ=(α+β)2−2αβαβ
=(−16)2−2×−13−13=(−16)2−2×−13−13 =\dfrac{{{\left( -\dfrac{1}{6} \right)}^{2}}-2\times -\dfrac{1}{3}}{-\dfrac{1}{3}}
=136+23−13=136+23−13
=1+2436−13=1+2436−13
=−2512
Hence, the value is −2512−2512.