wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α and β are the zeroes of the quadratic polynomial f(x)=ax2+bx+c, then evaluate:
(i) α4+β4
(ii) α2β2+β2α2

Open in App
Solution

f(x)=ax2+bx+c
Given, α&β are zeroes of f(x)
α+β=ba

αβ=ca

To find : α4+β4=(α2+β2)22(αβ)2

=((α+β)22αβ)222(αβ)2

=((ba)22(ca))22(ca)2

=(b2a22ca)22c2a2

=b4a4+4c2a24b2ca32c2a2

=b4a4+2c2a24b2ca3

and, α2β2+β2α2=(αβ+βα)22(αβ)(βα)

=(αβ+βα)22

Now, α+β=baα2+β2=(α+β)22αβ=b2a22ca(1)

αβ=ca(2)
Divide both α2+β2αβ=αβ+βα

α2+β2αβ=αβ+βα=(b2a22ca)(ca)=(b2a22ca)×(ac)

=b22acac
=(b2ac2)
α2β2+β2α2=(αββα)22=(b2ac2)22

=b4a2c2+44b2ac2

=b4a2c24b2ac+2

Hence, the answer is b4a2c24b2ac+2.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon