If α and β are the zeros of a polynomial
f(x)=6x2+x−2, find the values of αβ+βα.
−2512
Given polynomial is :
6x2+x−2ax2+bx+c⇒a=6; b=1; c=−2α+β=−ba=−16αβ=ca=−26=−13αβ+βα=α2+β2αβ=(α+β)2−2αβαβ
=(−16)2−2(−13)−13=(136+23)−13=2536−13
∴αβ+βα=−2512