If α and β are the zeros of the polynomial f(x)=6x2+x−2, find the value of (αβ+βα).
Since α and β are the zeroes of the quadratic polynomial f(x)=6x2+x−2,
Sum of the zeroes = (α+β)=−ba=−16
The product of the zeroes =-2/6=−1/3 αβ=ca=−26=−13
Now,
αβ+βα=(α2+β2)αβ
(by taking LCM)
∵(α+β)2=α2+β2+2αβ
αβ+βα=[(α+β)2–2αβ]αβ
By substitution the values of the sum of zeroes and products of the zeroes, we will get
=[(−16)2−2(−13)](−13)
=[136+23](−13)
=[(1+24)36](−13)
=(2536)(−13)
=−2512
αβ+βα=−2512