Concept : 1 Mark
Application : 2 Marks
Since α and β are the zeros of the quadratic polynomial
f(x)=6x2−x−7
∴α+β=−ba=16 and αβ=ca=−76
(i) We have,
α2+β2=(α+β)2−2αβ
⇒α2+β2=(−ba)2−2ca
⇒α2+β2=(16)2−2×−76
⇒α2+β2=136+73
⇒α2+β2=8536
(ii) We have,
αβ+βα=α2+β2αβ=(α+β)2−2αβαβ=(16)2−2(−76)−76
⇒αβ+βα=8536−76
∴αβ+βα=−8542