f(x)=x2−2x+3…(1)
⋅ Let the roots of f(x)=α,β
Now, sum of roots α+β=−ba=2…(2)
Product of roots αβ=ca=3…(3)
⋅ General form of Quadratic equation in sum of roots & product of roots is
p(x)=x2−(sum of roots)x+(product of roots)…(4)
⋅ Polynomial with roots α+2,β+2
→Sum of roots=α+2+β+2=α+β+4=2+4=6
→Product of roots=(α+2)(β+2)=αβ+2(α+β)+4=(3)+2(2)+4=11
Polynomial ⇒k(x2−6x+11)=0(k is constant).
⋅ Polynomial with rootsα−1α+1,β−1β+1
→Sum of roots=αβ+α−β−1+αβ−α+β−1βα+α+β+1=2(3)−23+1+2=46=23
→Product of roots=(α−1α+1)(β−1β+1)=αβ−(α+β)+1αβ+(α+β)+1=3−2+13+2+1=26=13
Polynomial : k(x2−23x+13)=0 (K is constant).